
SR-TE Segment List optimizations
Dmytro Shypovalov
dmytro@vegvisir.ie

About me & who is this session for
● Founder of Vegvisir Systems, developer of SDN controller Traffic Dictator

○ Previously - Network Engineer, working for ISP and vendors
● TD is a user-friendly SR-TE controller built for network engineers
● See https://vegvisir.ie/ for more information

● Target audience - engineers who work with SR and have to understand how the SR
implementation they use solves the SL generation problem (and its caveats)
○ Or just folks interested in technical details of how SR works

● Router or controller developers who want to optimize their SR-TE algorithms
● The goal of the session is to raise awareness about this problem and show how different

SR implementations generate wrong segment lists in some cases

https://vegvisir.ie/

What is Traffic Engineering
● Traffic engineering is steering traffic over a path different than the shortest path
● I want to steer traffic from R1 to R7 using only blue links
● R1 (or controller) prunes non-blue links from IGP topology and calculates CSPF
● The result is the list of links: [R1-R2, R2-R4, R4-R6, R6-R8, R8-R7] - in RSVP, this is encoded

as Explicit Route object (ERO)
● With classical MPLS-TE, R1 signals an MPLS LSP using RSVP to steer traffic via this path
● Path must be signaled and maintained before any traffic can be forwarded

Segment routing - stateless TE
● Path signaling and state maintenance in MPLS-TE leads to complexity, poor scalability

and interoperability
● Segment Routing is stateless - desired path is encoded in the label stack itself
● SR is simpler, more scalable, supports ECMP and anycast
● Challenge - compute the label stack (or segment list) to forward traffic correctly

○ Wrong segment list will lead to traffic forwarded via a wrong path, or blackholed
○ Suboptimal segment list (more labels than required) will trigger platform

limitations (some chips can push 3-4 labels max) or MTU issues
○ Multiple segment lists for ECMP lead to a higher HW resource usage

● Not every SR implementation can generate segment lists
○ An SDN controller can help with that, so router implementations can be quite

minimalistic (e.g. FRR, Arista EOS)

Segment Routing - naive implementation
● Naive approach: for each link in ERO except the first one, push an adjacency segment
● This can result in an absurd amount of labels pushed on the packet - leading to platform

limitations and MTU issues

Improvement: prefix SID
● Use prefix SID to reduce the label stack: first steer traffic from R2 to R8 using shortest

path, then steer to R7
● Even in large topologies, most TE functions need no more than 2-3 labels, so we won’t hit

platform limitations or MTU

Adjacency and prefix SID together

● Sometimes, a combination of adj SID and prefix SID is required to steer traffic
● E.g.: steer to R8 following shortest path, then use a specific link to R7

Algorithm basics

● Run CSPF to get ERO (similar to RSVP-TE, except also ECMP is possible)
● Go backwards from the last to the first node and compare non-constrained SPF ERO to

the endpoint with CSPF ERO
● When required, add relevant node or adjacency SID, and use this “anchored node” for

next SPF-to-CSPF comparison
● There are some caveats with SRGB, ECMP, Global adj SID and Anycast SID
● See blog post https://routingcraft.net/generating-an-optimal-segment-list-for-sr-te/

https://routingcraft.net/generating-an-optimal-segment-list-for-sr-te/

Adjacency and prefix SID together - tests

● Send traffic from R1 to R11 via BLUE links - expecting segment list [Node R5, Node R10,
Adj R11]

● Since R5 is directly connected to R1, node SID of R5 is used just for nexthop resolution
and not sent in dataplane

Adjacency and prefix SID together - outputs
● TD, IOS-XR, JUNOS calculate the same

segment list
● Differences in output due to different

SRGB - ignore that

TD#show traffic-eng policy R1_R11_BLUE_ONLY_IPV4 detail

 Segment lists:
 [16005, 16010, 24013]

RP/0/RP0/CPU0:XR#show segment-routing traffic-eng policy

 SID[0]: 16005 [Prefix-SID, 5.5.5.5]
 SID[1]: 16010 [Prefix-SID, 10.10.10.10]
 SID[2]: 24013 [Adjacency-SID, 10.100.15.10 - 10.100.15.11]

admin@JUNOS# run show spring-traffic-engineering lsp detail

 computed segment : 1 (computed-node-segment):
 node segment label: 21
 router-id: 5.5.5.5 ::1
 computed segment : 2 (computed-node-segment):
 node segment label: 16010
 router-id: 10.10.10.10 ::1
 computed segment : 3 (computed-adjacency-segment):
 label: 24013
 source router-id: 10.10.10.10, destination router-id:
11.11.11.11
 source interface-address: 10.100.15.10, destination
interface-address: 10.100.15.11

Global adjacency SID

● Same topology and constraint as before
● Global adj SID can be used to optimize the segment list from 3 to 2 SID in this example

(instead of node R10 + adj R11, just use R10 global adj SID towards R11)
● This is also similar to End.X function in SRv6 (SRv6 has no analog to local adj SID)
● Global Adj SID is advertised as index (just like prefix SID), so the implementation should

correctly add index to the SRGB of the relevant node
● If not supporting global adj SID - just ignore it and use local adj SID (if available)
● Example on TD:

TD#show traffic-eng policy R1_R11_BLUE_ONLY_IPV4 detail

 Segment lists:
 [900005, 902100]

Global adjacency SID (cont.)
● JUNOS puts label equal to global adj SID index (without SRGB) - garbage label for which

there is no forwarding entry on any router (so traffic will be dropped)
● IOS-XR is confused by global adj SID and puts corrupt label u32::MAX in the label stack

○ CEF is unresolved and traffic is dropped on headend
● Both behave this way even when there is another local adj SID available

RP/0/RP0/CPU0:IOSXR#show segment-routing traffic-eng policy

 SID[0]: 16005 [Prefix-SID, 5.5.5.5]
 SID[1]: 900010 [Prefix-SID, 10.10.10.10]
 SID[2]: 4294967295 [Adjacency-SID, 10.100.15.10 - 10.100.15.11]

admin@JUNOS# run show spring-traffic-engineering lsp detail

 computed segments count: 3
 computed segment : 1 (computed-node-segment):
 node segment label: 21
 router-id: 5.5.5.5 ::1
 computed segment : 2 (computed-node-segment):
 node segment label: 900010
 router-id: 10.10.10.10 ::1
 computed segment : 3 (computed-adjacency-segment):
 label: 2100
 source router-id: 10.10.10.10, destination router-id: 11.11.11.11
 source interface-address: 10.100.15.10, destination
interface-address: 10.100.15.11

Broadcast links

● In a typical ISP network, most links are configured as
point-to-point

● However, IS-IS and OSPF also support broadcast links -
i.e. more than 2 routers on a LAN

● Common to have broadcast links as misconfiguration
● Routers elect a DIS which generates pseudonode LSP
● While regular IS-IS LSP would have Adj SID TLV

associated with a neighbor system ID; the LSP
describing pseudonode connection has multiple LAN
Adj SID (per neighbor)

● SL generation algorithm should correctly handle both
P2P and broadcast links and use the relevant Adj SID
or LAN Adj SID

Broadcast links - test topology

1. Send traffic from R1 to R11 using only YELLOW links (using LAN between R1 and R4)
2. Send traffic from R1 to R11 using only BLUE links - see if the algorithm gets confused by

presence of a LAN segment in the topology

Broadcast links - tests
● TD and JUNOS both generate correct segment lists, although slightly different in first

test (TD returns [R4, R7, R11] and JUNOS [R4, R9, R11])
● IOS-XR fails the path in the first test, and computes an incorrect segment list in the

second test

TD#show traffic-eng policy R1_R11_YELLOW_ONLY_IPV4
detail

 Segment lists:
 [16004, 16007, 16011]

admin@JUNOS# run show spring-traffic-engineering lsp detail

 computed segments count: 3
 computed segment : 1 (computed-node-segment):
 node segment label: 20
 router-id: 4.4.4.4 ::1
 computed segment : 2 (computed-node-segment):
 node segment label: 16009
 router-id: 9.9.9.9 ::1
 computed segment : 3 (computed-node-segment):
 node segment label: 16011
 router-id: 11.11.11.11 ::1

RP/0/RP0/CPU0:XR#show segment-routing traffic-eng policy

 Affinity:
 include-all:
 YELLOW
 Dynamic (inactive)
 Last error: No path found

Broadcast links - tests (cont.)
● The second test on XR will result in traffic being ECMP’ed over R4/R5, thus violating the

“BLUE only” constraint

RP/0/RP0/CPU0:XR#show segment-routing traffic-eng policy

 Affinity:
 include-all:
 BLUE
 SID[0]: 16010 [Prefix-SID, 10.10.10.10]
 SID[1]: 24005 [Adjacency-SID, 10.100.15.10 - 10.100.15.11]

RP/0/RP0/CPU0:XR#show segment-routing traffic-eng forwarding policy name srte_c_1101_ep_11.11.11.11

Color: 1101, End-point: 11.11.11.11
 Preference: 100 (configuration)
 Name: R1_R11_BLUE_ONLY_IPV4
 Paths:
 Path[0]:
 Outgoing Interfaces: GigabitEthernet0/0/0/1
 Label Stack (Top -> Bottom): { 16010, 24005 }
 Path[1]:
 Outgoing Interfaces: GigabitEthernet0/0/0/2
 Label Stack (Top -> Bottom): { 16010, 24005 }

ECMP
● Segment Routing is ECMP-aware, so must be

SR-TE!
● If we want to steer traffic from R1 to R3 using

blue links, 2 segment lists are required: [R5,
R3] and [R8, R3]

● Multiple SL cause higher HW resource usage
● If a controller is used to advertise policies,

ECMP can become a problem
○ BGP-SRTE supports multiple SL
○ PCEP needs to support

[draft-ietf-pce-multipath]
○ BGP-LU needs add-path

https://datatracker.ietf.org/doc/draft-ietf-pce-multipat

Anycast SID
● Configure the same prefix SID on R5 and R8
● Now we can steer traffic into ECMP with just

one segment list, using anycast SID
● SL generation algorithm must do a number

of checks to make sure the anycast SID can
be used:
○ SRGB must match
○ No other nodes must have the same

SID
○ After anycast SID, path must converge

on one node or there must be another
set of anycast nodes (but no adj SID is
allowed)

Anycast SID in multi-domain topologies
● Anycast SID is especially useful in multi-domain topologies, as it provides load balancing

and resiliency
● From the controller perspective we see BGP-LS topology but not the IGP configuration,

so it’s safer to assume there is no redistribution/leaking between IGP
● Hence, in multi-domain SR-TE, always add ABR anycast SID to the segment list
● Check that after anycast SID, there is another anycast SID or the path converges on one

node

ECMP and Anycast SID - test topology

● Constraint: BLUE or ORANGE links
● Expecting segment lists when

anycast SID is not enabled on R2
and R5

● Expecting optimization to one SL
when anycast is enabled

ECMP and Anycast SID - tests

● TD generates 2 SL: [R2, R11] and [R5, R11] and optimizes them to [Anycast R2-R5, R11]

!! without anycast SID
TD1#show traffic-eng policy R1_R11_BLUE_OR_ORANGE_IPV4 detail

 Segment lists:
 [16005, 16011]
 [16002, 16011]

!! with anycast SID
TD1#show traffic-eng policy R1_R11_BLUE_OR_ORANGE_IPV4 detail

 Segment lists:
 [16025, 16011]

ECMP and Anycast SID - tests (cont.)
● JUNOS generates 2 SL: [R2, R11] and [R6, R11] - different from TD but still correct
● Doesn’t optimize with anycast SID
admin@JUNOS# run show spring-traffic-engineering lsp detail

 Total number of computed paths: 2
 Segment ID : 128
 Computed-path-index: 1
 computed segments count: 2
 computed segment : 1 (computed-node-segment):
 node segment label: 22
 router-id: 6.6.6.6 ::1
 computed segment : 2 (computed-node-segment):
 node segment label: 16011
 router-id: 11.11.11.11 ::1
 Segment ID : 129
 Computed-path-index: 2
 computed segments count: 2
 computed segment : 1 (computed-node-segment):
 node segment label: 21
 router-id: 5.5.5.5 ::1
 computed segment : 2 (computed-node-segment):
 node segment label: 16011
 router-id: 11.11.11.11 ::1

ECMP and Anycast SID - tests (cont.)

● IOS-XR doesn’t support ECMP with SR-TE and generates just one segment list [R6, R11]
● Anycast SID doesn’t work either (I think ECMP support is a prerequisite for anycast SID)
● There is a command “anycast-sid-inclusion” but it doesn’t work

○ One effect I noticed this command has is that it forces the algorithm to prefer
prefix SID without N flag in segment list (by default, only prefix SID with N flag are
used)

○ However, if a prefix SID is advertised by more than one router (i.e. anycast), XR can’t
use that SID

RP/0/RP0/CPU0:XR#show segment-routing traffic-eng policy

 Metric Type: TE, Path Accumulated Metric: 2000
 SID[0]: 16006 [Prefix-SID, 6.6.6.6]
 SID[1]: 16011 [Prefix-SID, 11.11.11.11]

Choosing which SID to use

● What if a router has multiple prefix SID configured?
● Prefix SID can have N (node flag) which means it’s unique to this node (like a router-id)

○ Prefix SID without N flag can be configured on multiple nodes
● Assuming no anycast is used (we want to steer traffic through THIS node), a SID with N

(node) flag should be preferred
● Ideally not to use SID with explicit null flag (because SR-TE has its own explicit null

mechanism, using SID with exp-null can result in multiple exp-null labels imposed)
● TD chooses prefix SID in the following order:

○ Node SID without exp-null
○ Prefix SID without exp-null
○ Node SID with exp-null
○ Prefix SID with exp-null

Choosing which SID to use (cont.)

● IOS-XR chooses node SID (N flag must be set) with the lowest IP; SID without N flag are
ignored

● With “anycast-sid-inclusion” configured under policy, XR prefers prefix SID (without N
flag) - unless this SID is configured on more than one node - strange behaviour!

● JUNOS always picks prefix SID equal to the router-id
○ Doesn’t check for N flag
○ If the router-id loopback doesn’t have prefix SID, the policy will fail
○ For IPv6 SR-MPLS (not SRv6!) policies, JUNOS requires IPv6 router-id

Conclusion

● Segment Routing simplifies traffic engineering for the network operator - but not for the
developer!

● CSPF algorithm from RSVP-TE is not suitable to be reused for SR-TE: no ECMP, no
anycast, no EPE

● A good CSPF and Segment list generation algorithm should support ECMP and anycast
by design

● When deploying SR-TE, test how your implementation of choice generates segment lists
in different scenarios. Things to watch: ECMP, broadcast links, global adj SID, selection
among multiple SID

